On Twisted Fourier Analysis and Convergence of Fourier Series on Discrete Groups
نویسندگان
چکیده
منابع مشابه
Discrete–time Fourier Series and Fourier Transforms
We now start considering discrete–time signals. A discrete–time signal is a function (real or complex valued) whose argument runs over the integers, rather than over the real line. We shall use square brackets, as in x[n], for discrete–time signals and round parentheses, as in x(t), for continuous–time signals. This is the notation used in EECE 359 and EECE 369. Discrete–time signals arise in t...
متن کاملDiscrete–time Fourier Series and Fourier Transforms
We now start considering discrete–time signals. A discrete–time signal is a function (real or complex valued) whose argument runs over the integers, rather than over the real line. We shall use square brackets, as in x[n], for discrete–time signals and round parentheses, as in x(t), for continuous–time signals. This is the notation used in EECE 359 and EECE 369. Discrete–time signals arise in t...
متن کاملConvergence of Fourier Series
The purpose of this paper is to explore the basic question of the convergence of Fourier series. This paper will not delve into the deeper questions of convergence that measure theory illuminates, but requires only the basic principles set out by introductory real and complex analysis.
متن کاملDetermination of a jump by Fourier and Fourier-Chebyshev series
By observing the equivalence of assertions on determining the jump of a function by its differentiated or integrated Fourier series, we generalize a previous result of Kvernadze, Hagstrom and Shapiro to the whole class of functions of harmonic bounded variation. This is achieved without the finiteness assumption on the number of discontinuities. Two results on determination of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fourier Analysis and Applications
سال: 2009
ISSN: 1069-5869,1531-5851
DOI: 10.1007/s00041-009-9067-z